Comparative Analysis for SVM-Based Interactive Document Retrieval
نویسندگان
چکیده
Support Vector Machines (SVMs) were applied to interactive document retrieval that uses active learning. In such a retrieval system, the degree of relevance is evaluated by using a signed distance from the optimal hyperplane. It is not clear, however, how the signed distance in SVMs has characteristics of vector space model. We therefore formulated the degree of relevance by using the signed distance in SVMs and comparatively analyzed it with a conventional Rocchio-based method. Although vector normalization has been utilized as preprocessing for document retrieval, few studies explained why vector normalization was effective. Based on our comparative analysis, we theoretically show the effectiveness of normalizing document vectors in SVM-based interactive document retrieval. We then propose a cosine kernel that is suitable for SVM-based interactive document retrieval. The effectiveness of the method was compared experimentally with conventional relevance feedback for Boolean, Term Frequency and Term FrequencyInverse Document Frequency representations of document vectors. Experimental results for a Text REtrieval Conference data set showed that the cosine kernel is effective for all document representations, especially Term Frequency representation.
منابع مشابه
A Kernel for Interactive Document Retrieval Based on Support Vector Machines
This paper describes an application of support vector machines (SVMs) to interactive document retrieval using active learning. We show that an SVM-based retrieval has an association with conventional Rocchio-based relevance feedback by a comparative analysis. We propose a cosine kernel, which denotes cosine similarity, suitable for an SVM-based interactive document retrieval based on the analys...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملA Comparative Study of Machine Learning Approaches- SVM and LS-SVM using a Web Search Engine Based Application
Semantic similarity refers to the concept by which a set of documents or words within the documents are assigned a weight based on their meaning. The accurate measurement of such similarity plays important roles in Natural language Processing and Information Retrieval tasks such as Query Expansion and Word Sense Disambiguation. Page counts and snippets retrieved by the search engines help to me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013